Exact solutions in low-rank approximation with zeros

نویسندگان

چکیده

Low-rank approximation with zeros aims to find a matrix of fixed rank and zero pattern that minimizes the Euclidean distance given data matrix. We study critical points this optimization problem using algebraic tools. In particular, we describe special linear, affine, determinantal relations satisfied by points. also investigate number how is related complexity nonnegative factorization problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions in Structured Low-Rank Approximation

Structured low-rank approximation is the problem of minimizing a weighted Frobenius distance to a given matrix among all matrices of fixed rank in a linear space of matrices. We study the critical points of this optimization problem using algebraic geometry. A particular focus lies on Hankel matrices, Sylvester matrices and generic linear spaces.

متن کامل

Low-rank Tensor Approximation

Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...

متن کامل

Structured Low Rank Approximation

Abstract. This paper concerns the construction of a structured low rank matrix that is nearest to a given matrix. The notion of structured low rank approximation arises in various applications, ranging from signal enhancement to protein folding to computer algebra, where the empirical data collected in a matrix do not maintain either the specified structure or the desirable rank as is expected ...

متن کامل

Dynamical low-rank approximation

In low-rank approximation, separation of variables is used to reduce the amount of data in computations with high-dimensional functions. Such techniques have proved their value, e.g., in quantum mechanics and recommendation algorithms. It is also possible to fold a low-dimensional grid into a high-dimensional object, and use low-rank techniques to compress the data. Here, we consider low-rank t...

متن کامل

Dynamical Low-Rank Approximation

For the low rank approximation of time-dependent data matrices and of solutions to matrix differential equations, an increment-based computational approach is proposed and analyzed. In this method, the derivative is projected onto the tangent space of the manifold of rank-r matrices at the current approximation. With an appropriate decomposition of rank-r matrices and their tangent matrices, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2022

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2022.01.021